A New Decomposition Technique in Solving Multistage Stochastic Linear Programs by Infeasible Interior Point Methods
نویسندگان
چکیده
Multistage stochastic linear programming (MSLP) is a powerful tool for making decisions under uncertainty. A deteministic equivalent of MSLP is a large-scale linear program with nonanticipativity constraints. Recently developed infeasible interior point methods are used to solve the resulting linear program. Technical problems arising from this approach include rank reduction and computation of search directions. In particular, the search direction is generated by solving a set of primal-dual equations with size much less than the original problem. The sparsity and special structure of the problem are exploited by the interior point method. Preliminary numerical results are reported. The study shows that, by combining the infeasible interior points and specific decomposition techniques, it is possible to greatly improve the computability of multistage stochastic linear programs.
منابع مشابه
A full Nesterov-Todd step infeasible interior-point algorithm for symmetric cone linear complementarity problem
A full Nesterov-Todd (NT) step infeasible interior-point algorithm is proposed for solving monotone linear complementarity problems over symmetric cones by using Euclidean Jordan algebra. Two types of full NT-steps are used, feasibility steps and centering steps. The algorithm starts from strictly feasible iterates of a perturbed problem, and, using the central path and feasi...
متن کاملAn infeasible interior-point method for the $P*$-matrix linear complementarity problem based on a trigonometric kernel function with full-Newton step
An infeasible interior-point algorithm for solving the$P_*$-matrix linear complementarity problem based on a kernelfunction with trigonometric barrier term is analyzed. Each (main)iteration of the algorithm consists of a feasibility step andseveral centrality steps, whose feasibility step is induced by atrigonometric kernel function. The complexity result coincides withthe best result for infea...
متن کاملSolving Multistage Stochastic Programs with Tree Dissection
One component of every multi-stage stochastic program is a ltration that determines the notion of which random events are observable at each stage of the evolution. Within the context of interior-point methods, we describe an e cient pre-ordering technique, called ltered dissection, that takes advantage of the ltration's structure to dramatically reduce ll-in in the factorization as compared wi...
متن کاملAn improved infeasible interior-point method for symmetric cone linear complementarity problem
We present an improved version of a full Nesterov-Todd step infeasible interior-point method for linear complementarityproblem over symmetric cone (Bull. Iranian Math. Soc., 40(3), 541-564, (2014)). In the earlier version, each iteration consisted of one so-called feasibility step and a few -at most three - centering steps. Here, each iteration consists of only a feasibility step. Thus, the new...
متن کاملA path-following infeasible interior-point algorithm for semidefinite programming
We present a new algorithm obtained by changing the search directions in the algorithm given in [8]. This algorithm is based on a new technique for finding the search direction and the strategy of the central path. At each iteration, we use only the full Nesterov-Todd (NT)step. Moreover, we obtain the currently best known iteration bound for the infeasible interior-point algorithms with full NT...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Global Optimization
دوره 28 شماره
صفحات -
تاریخ انتشار 2004